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In order to facilitate numerical simulations of plasma phenomena where kinetic
processes are important, we have studied the technique of Fourier transforming the
Vlasov equation analytically in velocity space, and solving the resulting equation
numerically. Particular attention has been paid to the boundary conditions of the
Fourier transformed system. By using outgoing wave boundary conditions in the
Fourier transformed space, small-scale information in velocity space is carried out-
side the computational domain and is removed, representing a dissipative loss mech-
anism. Thereby the so-called recurrence phenomenon is reduced. In the present
article, a previously developed method in one spatial and one velocity dimension
plus time is generalised to two spatial and two velocity dimensions plus time. Dif-
ferent high-order methods are used for computing derivatives as well as for the time
stepping. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

For many decades, methods of solving numerically the Vlasov equation have been de-
veloped, including methods based on Hermite and Fourier expansions [1, 6] and methods
based on the time-splitting scheme [4], which has been generalised to higher dimensions
for simulations of magnetised plasma [3]. Convective schemes have also been developed
for the collisional Boltzmann equation [8], and a conservative scheme has been developed for
the one-dimensional Vlasov equation [9].

A problem with the solution of the Vlasov equation is its tendency to become oscillatory
in velocity space, due to free-streaming terms. Steep gradients are then created and problems
of calculating the v (velocity) derivative of the function accurately increase with time [1, 7];
according to the sampling (Nyqvist) theorem, it will eventually be impossible to represent
all parts of the solution on a uniform grid. If not treated carefully, this problem may lead
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to the so-called recurrence phenomenon, where parts of the initial condition artificially
reappear on the numerical grid [4].

In applications, the recurrence phenomenon may in some cases be unimportant if other
processes dominate [15]. It can be important if, for example, the long-time behaviour of a
single wave is studied [16]. (In the last reference, the author carefully stopped the simulation
before the recurrence phenomenon could take place.)

Several approaches to minimising effects due to the recurrence phenomenon have been
developed: A time-splitting scheme has been developed where smoothing operators are
applied to the numerical solution so that the finest structures are damped out and never
appear on the numerical grid [4]. A Fourier–Fourier method, where the Vlasov equation
is Fourier transformed both in x and v space, has been developed [1]. A filtered method
based on a convolution by a Gaussian function in velocity space has been developed for
the Fourier–Fourier method [12], and for the time-split Fourier–Fourier method [11]. In
the filtered method, the Vlasov equation is transformed into an equation with smoother
solutions.

The method developed in the present paper is related to the above methods, particularly
to the Fourier–Fourier method. The Vlasov equation is Fourier transformed in v space,
but not in x space, into an equation with smoother solutions in velocity space, and the
small-scale information in velocity space is removed through an outgoing wave boundary
condition in the Fourier transformed velocity space. The method was earlier developed for
the one-dimensional Vlasov–Poisson system [7] and in the present article is generalised to
the two-dimensional Vlasov equation. The main results are the proof of the well-posedness
of the Fourier transformed system, including the boundary conditions, and an example
of a stable and accurate algorithm which has been implemented to integrate the equation
in time.

The method is designed for investigating basic nonlinear particle-wave interactions in
magnetised plasma, for example upper hybrid turbulence (and lower hybrid turbulence if
ions are allowed to move), and nonlinear coupling to Bernstein modes. Many such inter-
actions are not fully understood and are believed to be the source of some unexplained
phenomena observed in experiments [14].

In Section 2.1 the three-dimensional Vlasov–Maxwell system is discussed, together with
the Fourier transform technique in velocity space. The two-dimensional Vlasov equation
is discussed in Sections 2.2–2.6, where well-posed boundary conditions are derived in
preparation for the numerical simulation of the Fourier transformed system. The numerical
schemes used to approximate the time-dependent solution of the Vlasov equation system are
described in Section 3, and the numerical experiments and results are presented in Section 4,
where the results are compared with known theory. In Section 5 some conclusions are drawn
regarding the usefulness of the method.

2. THE VLASOV–MAXWELL SYSTEM

2.1. The Three-Dimensional System

The Vlasov equation

∂ f�

∂t
+ v · ∇x f� + q�

m�
(E + v × B) · ∇v f� = 0 (1)
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describes the action of the electromagnetic field on charged particles of type � (e.g., “elec-
trons” or “singly ionised oxygen ions”), with each particle having the electric charge q�

and mass m� . One equation is needed for each species of particles.
The charge and current densities act as sources of self-consistent electromagnetic fields

according to the Maxwell equations

∇x · E = 1

ε0

∑
�

q�n�, ∇x · B = 0, (2)

∇x × E = −∂B
∂t

, ∇x × B = �0

∑
�

q�n�v� + ε0�0
∂E
∂t

, (3)

where the particle number densities n� and mean velocities v� are obtained as moments of
the distribution function as

n�(x, t) =
∫ ∞

−∞
f�(x, v, t) d3v, v�(x, t) = 1

n�(x, t)

∫ ∞

−∞
v f�(x, v, t) d3v, (4)

respectively. The Vlasov equations together with the Maxwell equations form a closed
system.

By using the Fourier transform pair

f�(x, v, t) =
∫ ∞

−∞
f̂ �(x, �, t)e−i�·v d3�, (5)

f̂ �(x, �, t) = 1

(2�)3

∫ ∞

−∞
f�(x, v, t)ei�·v d3v, (6)

the velocity variable v is transformed into a new variable � and the unknown function
f (x, v, t) is changed to a new, complex valued function f̂ (x, �, t), which obeys the trans-
formed Vlasov equation

∂ f̂ �

∂t
− i∇x · ∇� f̂ � − q�

m�
{iE · � f̂ � + ∇� · [(B × �) f̂ �]} = 0. (7)

The nabla operators ∇x and ∇� denote differentiation with respect to x and �, respectively.
Equation (7) is again solved together with the Maxwell equations, where the particle

number densities and mean velocities are obtained as

n�(x, t) = (2�)3 f̂ �(x, 0, t), v�(x, t) = −i
(2�)3

n�(x, t)
[∇� f̂ �(x, �, t)]�=0, (8)

respectively. One can note that the integrals over infinite v space have been converted to
evaluations in � space. The factor (2�)3 in Eqs. (6) and (8) is valid for three velocity
dimensions. For n velocity dimensions the factor is (2�)n .

2.2. The Two-Dimensional Vlasov–Poisson System

We have chosen to study numerically the two-dimensional Vlasov–Poisson system con-
sisting of electrons and ions, with the ions assumed to be fixed uniformly in space. We



OUTFLOW BOUNDARY CONDITIONS 101

assume an external magnetic field B(x1, x2, t) to be directed in the x3 direction, perpen-
dicularly to the motion of the electrons moving in the (x1, x2) plane. The electric field is
calculated self-consistently, using an electrostatic approximation. These assumptions lead
to the system

∂ f

∂t
+ v1

∂ f

∂x1
+ v2

∂ f

∂x2
− e

m

(
E1

∂ f

∂v1
+ E2

∂ f

∂v2
+ Bv2

∂ f

∂v1
− Bv1

∂ f

∂v2

)
= 0, (9)

E1(x1, x2, t) = − ∂

∂x1
�(x1, x2, t), E2(x1, x2, t) = − ∂

∂x2
�(x1, x2, t), (10)

−
(

∂2�

∂x2
1

+ ∂2�

∂x2
2

)
= e

ε0

[
n0 −

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, v1, v2, t) dv1 dv2

]
, (11)

where n0 is the neutralising heavy-ion-density background.
By using the Fourier transform pair

f (x1, x2, v1, v2, t) =
∫ ∞

−∞

∫ ∞

−∞
f̂ (x1, x2,�1,�2, t)e−i(�1v1+�2v2) d�2 d�1,

(12)

f̂ (x1, x2,�1,�2, t) = 1

(2�)2

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, v1, v2, t)ei(�1v1+�2v2) dv2 dv1,

the system (9)–(11) is transformed into

∂ f̂

∂t
− i

∂2 f̂

∂x1∂�1
− i

∂2 f̂

∂x2∂�2
+ e

m

[
i(E1�1 + E2�2) f̂ + B�1

∂ f̂

∂�2
− B�2

∂ f̂

∂�1

]
= 0, (13)

E1(x1, x2, t) = − ∂

∂x1
�(x1, x2, t), E2(x1, x2, t) = − ∂

∂x2
�(x1, x2, t), (14)

−
(

∂2�

∂x2
1

+ ∂2�

∂x2
2

)
= e

ε0

[
n0 − (2�)2 f̂ (x1, x2,�1,�2, t)�1=�2=0

]
. (15)

The Fourier transformed Vlasov equation was earlier studied analytically by Neunzert
[17, 18].

The systems (9)–(11) and (13)–(15) can be cast into dimensionless form by a scaling of
variables: The time t is scaled to the inverse of the plasma frequency �−1

p =
√

ε0m/(n0e2),
the velocity v is scaled to the thermal velocity vth = √

kBT/m, the new variables �1 and �2

are scaled to the inverse of the thermal velocity, and the spatial variables x1 and x2 are scaled
to the Debye length rD = vth�−1

p . Finally, the function f̂ is scaled to the background density
n0, the function f is scaled to n0v

−2
th , the electric field E is scaled to the quantity v2

thr−1
D (m/e),

and the electric potential� is scaled tov2
th(m/e). In terms of primed, dimensionless variables,

the scaling is

t = �−1
p t ′, v = vthv′, x = rDx′, (16)

� = v−1
th �′, f̂ = n0 f̂ , f = n0v

−2
th f ′, (17)

E = v2
thr−1

D (m/e)E′, � = v2
th(m/e)�′, B = �p(m/e)B. (18)

By this scaling of variables, and omitting the primes, the systems (9)–(11) and (13)–(15)
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attain the dimensionless form

∂ f

∂t
+ v1

∂ f

∂x1
+ v2

∂ f

∂x2
−

(
E1

∂ f

∂v1
+ E2

∂ f

∂v2
+ Bv2

∂ f

∂v1
− Bv1

∂ f

∂v2

)
= 0, (19)

E1 = − ∂�

∂x1
, E2 = − ∂�

∂x2
, (20)

−
(

∂2�

∂x2
1

+ ∂2�

∂x2
2

)
= 1 −

∫ ∞

−∞

∫ ∞

−∞
f dv1 dv2 (21)

and

∂ f̂

∂t
− i

∂2 f̂

∂x1∂�1
− i

∂2 f̂

∂x2∂�2
+ i(E1�1 + E2�2) f̂ + B�1

∂ f̂

∂�2
− B�2

∂ f̂

∂�1
= 0, (22)

E1 = − ∂�

∂x1
, E2 = − ∂�

∂x2
, (23)

−
(

∂2�

∂x2
1

+ ∂2�

∂x2
2

)
= 1 − (2�)2( f̂ )�1=�2=0, (24)

respectively.

2.3. The Problem of Oscillatory Structures in Velocity Space

We here repeat the motivation [1, 4, 7] for solving numerically the Fourier transformed
Vlasov–Poisson system (22)–(24) in (x, �, t) space instead of solving the original system
(19)–(21) in (x, v, t) space.

Due to free-streaming terms, the Vlasov equation may develop oscillatory structures in
velocity space. This can be illustrated by studying the interaction-free one-dimensional
equation

∂ f

∂t
+ v

∂ f

∂x
= 0 (25)

with the initial condition

f (x, v, 0) = f0(x, v) = [1 + A cos(kx x)]e−v2/2. (26)

The solution to this initial value problem is

f (x, v, t) = f0(x − vt, v) = [1 + A cos(kx x − kxvt)]e−v2/2. (27)

Solution (27) becomes increasingly oscillatory with respect to the velocity v as the time
t increases, due to the kxvt term inside the cosine function. It will finally be impossible to
represent the solution on a grid in (x, v) space according to the sampling (Nyqvist) theorem,
which states that one needs more than two grid points per wavelength in order to represent
a solution on an equidistant grid.

For the example given above, it is easy to calculate the time after which the solution
violates the sampling theorem: If one assumes that the grid size in v direction is �v, with
function values sampled for v = 0, ±�v, ±2�v, . . . , ±Nv�v, then the sampling theorem
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states the condition �v/�v > 2 for representing the solution, where �v is the “wavelength”
of the solution. The kxvt term in Eq. (27) gives the wavelength of the cosine function as
�v = 2�/kx t in the velocity direction, which gives the condition t < �/kx�v for the times
when it is possible to represent the solution on the computational grid. After this time the
solution violates the sampling theorem and it will therefore be impossible to represent the
solution on the grid.

The recurrence phenomenon [4] occurs at time t = TR = 2�/kx�v, which is the time for
the values of the initial condition to artificially reappear on the numerical grid, a numerical
effect caused by the violation of the sampling theorem just described.

2.4. Some Properties of the Fourier Transformed System

For most of the physical problems, the distribution function f (x, v, t) vanishes as a
Gaussian function ∼exp(−�v2) for large values of v. This behaviour guarantees that the
Fourier transformed function f̂ (x, �, t) will be a smooth function of � and that all �

derivatives therefore will be well-defined. This is favourable when the � derivatives in
Eq. (22) are to be approximated by numerical difference approximations.

The difference in behaviour between the Fourier transformed system and the original
system can be illustrated by the example in the previous section; taking the Fourier transform
of solution (27) in the velocity space yields

f̂ (x,�, t) = 1√
2�

{
e−�2/2 + A

2

[
cos(kx x)

(
e−(�−kx t)2/2 + e−(�+kx t)2/2

)

+ i sin(kx x)
(
e−(�−kx t)2/2 − e−(�+kx t)2/2

)]}
. (28)

This function does not become oscillatory for large times. The exp[−(� − kx t)2/2] and
exp[−(� + kx t)2/2] terms represent smooth wave packets which move away from the origin
� = 0 as t increases. Instead of becoming oscillatory, the Fourier transformed solution
becomes wider in � space with increasing time.

A symmetry property [1] exists for f̂ (x, �, t): Since the original distribution function
f (x, v, t) is real valued, the Fourier transformed function f̂ (x1, x2,�1,�2, t) fulfills the
relation

f̂ (x1, x2, −�1, −�2, t) = [ f̂ (x1, x2,�1,�2, t)]∗, (29)

where ∗ denotes complex conjugation. We will therefore later restrict the problem to only
nonnegative�1, and we will obtain the values for negative �1, when needed, by the symmetry
(29) (see the numerical approach in Section 3). For the derivatives, it holds that for even
numbers of derivatives of the function f̂ with respect to (�1, �2), the real part is even and
the imaginary part is odd. For odd numbers of derivatives of f̂ , the opposite holds.

2.5. Invariants of the Vlasov–Poisson System

The two-dimensional system (19)–(21) has several conserved (time independent) quan-
tities, such as the energy norm

‖ f ‖2 =
∫ L1

0

∫ L2

0

∫ ∞

−∞

∫ ∞

−∞
f 2 dv2 dv1 dx2 dx1 (30)
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and the total number of particles

N =
∫ L1

0

∫ L2

0

∫ ∞

−∞

∫ ∞

−∞
f dv2 dv1 dx2 dx1. (31)

If B = 0, then the total linear momentum

p =
∫ L1

0

∫ L2

0

∫ ∞

−∞

∫ ∞

−∞
(x̂1v1 + x̂2v2) f dv2 dv1 dx2 dx1 (32)

is conserved, and if B is independent of t , then the total energy (the Hamiltonian)

W =
∫ L1

0

∫ L2

0

[ ∫ ∞

−∞

∫ ∞

−∞

1

2

(
v2

1 + v2
2

)
f dv2 dv1 + 1

2

(
E2

1 + E2
1

)]
dx2 dx1 (33)

is conserved.
There exist many entropylike conserved functionals similar to ‖ f ‖2, such as where f 2

is replaced by f log( f ) [16]. The norm ‖ f ‖ has its counterpart in the Fourier transformed
space via the Parseval relation, and is also important in the definition of well-posed problems
[20].

The corresponding invariants for the Fourier transformed system (22)–(24) are

‖ f̂ ‖2 =
∫ L1

0

∫ L2

0

∫ ∞

−∞

∫ ∞

−∞
| f̂ |2 d�2 d�2 dx2 dx1, (34)

where a factor 1/(2�)2 has been omitted, and

N =
∫ L1

0

∫ L2

0
(2�)2( f̂ )�1=�2=0 dx2 dx1, (35)

p =
∫ L1

0

∫ L2

0
−i(2�)2

[
x̂1

∂ f̂

∂�1
+ x̂2

∂ f̂

∂�2

]
�1=�2=0

dx2 dx1, (36)

W =
∫ L1

0

∫ L2

0

{
−1

2
(2�)2

[
∂2 f̂

∂�2
1

+ ∂2 f̂

∂�2
2

]
�1=�2=0

+ 1

2

(
E2

1 + E2
2

)}
dx2 dx1, (37)

respectively. In the absence of analytical “calibration” solutions for nonlinear problems,
it is important to check how well a numerical scheme conserves these invariants. When
the system is restricted to a bounded domain, the norm ‖ f̂ ‖2 will be a nonincreasing,
positive function of time (see below), while the other three quantities will still be
conserved.

2.6. Restriction to a Bounded Domain

In order to adapt the system (22)–(24) for numerical simulations, it must be restricted to
a bounded domain and rewritten in a new form.

The computational domain is restricted to 0 ≤ x1< L1, 0 ≤ x2 < L2, 0 ≤ �1 ≤ �1,max,
and −�2,max ≤ �2 ≤ �2,max. For negative �1, the symmetry (29) is used to obtain function
values; it is therefore not necessary to numerically represent the solution for negative �1.
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Furthermore, at the boundary �1 = 0, function values for negative �2 can again be obtained
by the symmetry relation (29).

In the x1 and x2 directions, the periodic boundary conditions

f̂ (x1 + L1, x2,�1,�2, t) = f̂ (x1, x2,�1,�2, t), (38)

f̂ (x1, x2 + L1,�1,�2, t) = f̂ (x1, x2,�1,�2, t), (39)

respectively, are used.
The artificial boundaries at �1 =�1,max and �2 = ±�2,max must be treated with care so

that they do not give rise to reflections of waves or to instabilities. The strategy is to let
outgoing waves pass over the boundaries, and to set incoming waves to zero. The problem of
separating outgoing waves from incoming waves is solved by employing the spatial Fourier
series expansions (transforms). In order to explore the idea, one can study the reduced initial
value problem with a constant magnetic field B = B0 [cf. Eq. (22)],

∂ f̂

∂t
− i

∂2 f̂

∂x1∂�1
− i

∂2 f̂

∂x2∂�2
+ B0�1

∂ f̂

∂�2
− B0�2

∂ f̂

∂�1
= 0, (40)

f (x1, x2,�1,�2, 0) = f0(x1, x2,�1,�2). (41)

By introducing the spatial Fourier series pairs in x1 and x2 space,

�̃1,i1 = F1�1 = 1

L1

∫ L1

0
�1(x1)e−ikx1

x1 dx1, (42)

�1 = F−1
1 �̃1 =

∞∑
i1=−∞

�̃1,i1 eikx1
x1 , (43)

kx1 = 2�i1

L1
, i1 = 0, ±1, ±2, . . . . (44)

and

�̃2,i2 = F2�2 = 1

L2

∫ L2

0
�2(x2)e−ikx2

x2 dx2 (45)

�2 = F−1
2 �̃2 =

∞∑
i2=−∞

�̃2,i2 eikx2
x2 (46)

kx2 = 2�i2

L2
, i2 = 0, ±1, ±2, . . . , (47)

respectively, and Fourier transforming Eq. (40) in the x1 and x2 directions, one obtains a
new differential equation for the unknown function f̂ (kx1 , kx2 ,�1,�2, t),

∂ f̃

∂t
+ (

kx1 − B0�2
) ∂ f̃

∂�1
+ (

kx2 + B0�1
) ∂ f̃

∂�2
= 0, (48)

f̃
(
kx1 , kx2 ,�1,�2, t

)
t=0 = f̃ 0

(
kx1 , kx2 ,�1,�2

)
. (49)



106 BENGT ELIASSON

This is a hyperbolic equation for which the intial values are transported along the charac-
teristic curves, given by

d�1(t)

dt
= kx1 − B0�2(t), (50)

d�2(t)

dt
= kx2 − B0�1(t). (51)

Along the boundary �1 =�1,max, Eq. (50) describes an outflow of data when kx1 − B0�2 ≥ 0
and an inflow of data when kx1 − B0�2 < 0. A well-posed boundary condition is to set the
inflow to zero at the boundary, i.e.,

f̃�1=�1,max = 0, kx1 − B0�2 < 0, (52)

which can be expressed with the help of the Heaviside step function H as

f̃ = H
(
kx1 − B0�2

)
f̃ , �1 = �1,max, (53)

where

H
(
kx1 − B0�2

) =
{

1, kx1 − B0�2 ≥ 0,

0, kx1 − B0�2 < 0.
(54)

The boundary condition (53) allows outgoing waves to pass over the boundary and to
be removed, while incoming waves are set to zero; the removal of the outgoing waves
corresponds to the losing of information about the finest structures in velocity space.

Inverse Fourier transforming Eq. (53) then gives the boundary condition for the original
problem (40) as

f̂ = F−1
1 H

(
kx1 − B0�2

)
F1 f̂ , �1 = �1,max. (55)

The operator F−1
1 H (kx1 − B0�2)F1 is a projection operator which removes incoming waves

at the boundary �1 = �1,max. Similarly, the boundary conditions at �2 = ±�2,max become

f̂ = F−1
2 H

(
kx2 + B0�1

)
F2 f̂ , �2 = �2,max (56)

and

f̂ = F−1
2 H

(−kx2 − B0�1
)
F2 f̂ , �2 = −�2,max. (57)

In order to find well-posed boundary conditions in the �1 and �2 directions in the case
when B = B(x1, x2, t) varies both in time t and in x1 and x2 space, Eq. (22) is rewritten in
the equivalent form

∂ f̂

∂t
− i exp

[
i�2

∫ x1

0
(B − B01) dx1

]
∂

∂�1

(
−i�2 B01 + ∂

∂x1

)
G1

− i exp

[
−i�1

∫ x2

0
(B − B02) dx2

]
∂

∂�2

(
i�1 B02 + ∂

∂x2

)
G2

+ i(E1�1 + E2�2) f̂ = 0, (58)
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where the functions

G1 = f̂ exp

[
−i�2

∫ x1

0
(B − B01) dx1

]
(59)

and

G2 = f̂ exp

[
i�1

∫ x2

0
(B − B02) dx2

]
(60)

and the averaged magnetic fields are

B01(x2, t) = 1

L1

∫ L1

0
B dx1 (61)

and

B02(x1, t) = 1

L2

∫ L2

0
B dx2. (62)

The form (58) of the Vlasov equation makes it possible to introduce stable numerical
boundary conditions in the �1 and �2 directions in a systematic manner, as will be shown in
Section 3.2. One also notes that

∫ x1

0 (B − B01) dx1 and
∫ x2

0 (B − B02) dx2 are periodic func-
tions in x1 and x2 space; this is the reason for the introduction of B01 and B02, respectively.

By studying the flow of data in the �1 and �2 directions for the auxiliary functions G1

and G2, respectively, one finds the outflow boundary conditions to be

G1 = F−1
1 H

(
kx1−�2 B01

)
F1G1, �1 = �1,max, (63)

G2 = F−1
2 H

(
kx2−�1 B02

)
F2G2, �2 = �2,max, (64)

G2 = F−1
2 H

(−kx2−�1 B02
)
F2G2, �2 = −�2,max. (65)

In the case when B is independent of x1 and x2, the boundary conditions (63)–(65) reduce
to the conditions (55)–(57). In the case where the domain is extended to negative �1, there
will be a boundary condition

G1 = F−1
1 H

(−kx1 + �2 B01
)
F1G1, �1 = −�1,max, (66)

which will be used in the numerical scheme (see Section 3.2). Using Eqs. (59) and (60) in
Eqs. (63)–(66) yields the boundary conditions for f̂ .

A proof of the well-posedness of the continuous problem with the given boundary con-
ditions is given in the Appendix.

3. THE NUMERICAL APPROACH

3.1. Discretisation

We discretise the problem on a rectangular, equidistant grid with periodic boundary
conditions in the x1 and x2 directions. In the �1 direction the grid begins at �1 = 0 and
ends at �1 =�1,max, and in the �2 direction the grid begins at �2 = − �2,max and ends at
�2 =�2,max.
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The approximate function values at the grid points are enumerated such that

f̂
(
x1,i1 , x2,i2 ,�1, j1 ,�2, j2 , tk

) ≈ f̂ k
i1,i2, j1, j2 , �

(
x1,i1 , x2,i2 , tk

) ≈ �k
i1,i2

, (67)

E1
(
x1,i1 , x2,i2 , tk

) ≈ Ek
1,i1,i2

, E2
(
x1,i1 , x2,i2 , tk

) ≈ Ek
2,i1,i2

, (68)

with the known variables discretised as

x1,i1 = i1�x1, i1 = 0, 1, . . . , Nx1 − 1, (69)

x2,i2 = i2�x2, i2 = 0, 1, . . . , Nx2 − 1, (70)

�1, j1 = j1��1, j1 = 0, 1, . . . , N�1 , (71)

�2, j2 = j2��2, j2 = −N�2 . . . −1, 0, 1, . . . , N�2 , (72)

tk = tk−1 + �tk, t0 = 0, k = 1, 2, . . . , Nt , (73)

and with the grid sizes calculated as

�x1 = L1

Nx1

, �x2 = L2

Nx2

, ��1 = �1,max

N�1

, ��2 = �2,max

N�2

, (74)

respectively. The time step �tk is calculated adaptively (see Section 3.3). For convenience,
only even numbers will be used for Nx1 and Nx2 .

3.2. Numerical Approximations

The Vlasov–Poisson system (58), (23), and (24) together with the boundary conditions
(63)–(66) is approximated by a semidiscretisation in x1, x2, �1, and �2 space. After that,
time steps are taken with the fourth-order Runge–Kutta method.

The Vlasov equation (58) is solved numerically on the domain, including the boundaries
at �1 =�1,max and �2 =�2,max, after applying the boundary conditions (63)–(66) on f̂ [via
G1 and G2; see Eqs. (59) and (60)] in the right-hand side of Eq. (58), and after solving the
algebraic Eqs. (23) and (24) numerically to obtain E1 and E2; one can view E1 and E2 as
functions of f̂ . This yields the semidiscretisation

d

dt
f̂ i1,i2, j1, j2 = P( f̂ )i1,i2, j1, j2 , (75)

where P is a grid function representing the numerical approximation of the right-hand
sides of Eq. (58); the function P is a function of all components f̂ i1,i2, j1, j2 . The un-
knowns f̂ i1,i2, j1, j2 are then discretised also in time, and the time stepping is performed
with the Runge–Kutta algorithm (where we omit writing out the subscript i1,i2, j1, j2 on K , P ,
and f̂ ):

1. K (1) ← P( f̂ k), ∀i1, i2, j1, j2.
2. K (2) ← P( f̂ k + K (1)�t/2), ∀i1, i2, j1, j2.
3. K (3) ← P( f̂ k + K (2)�t/2), ∀i1, i2, j1, j2.
4. K (4) ← P( f̂ k + K (3)�t/2), ∀i1, i2, j1, j2.
5. f̂ k+1 ← f̂ k + �t

6 (K (1) + 2K (2) + 2K (3) + K (4)), ∀i1, i2, j1, j2.
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The steps needed for obtaining the approximation Pi1,i2, j1, j2 are as follows:

1. Apply the boundary conditions (63)–(66) on the present Runge–Kutta stage of f̂ . In
the first Runge–Kutta step, the operators act on f̂ k and the result replaces f̂ k itself.

2. Calculate the electric field numerically from Eqs. (23) and (24) using the present
Runge–Kutta stage of f̂ .

3. Calculate a numerical approximation of Eq. (58) for all points including the points
along the boundaries �1 =�1,max and �2 =�2,max.

Noting that the solution is periodic in the x1 and x2 directions, pseudospectral methods
(trigonometric interpolations) are employed to calculate the x1 and x2 derivatives and in-
tegrals accurately. The Fourier transform and its inverse is approximated by the discrete
Fourier transform and inverse discrete Fourier transform, respectively. The discrete trans-
forms are efficiently calculated by using the fast Fourier transform (FFT) and inverse fast
Fourier transform (IFFT) algorithms; symbolically, the notations F1 ≈ FFT1, F−1

1 ≈ IFFT1

and F2 ≈ IFFT2, F−1
2 ≈ IFFT2 will be used.

A problem is that the Fourier components corresponding to i1 = ±Nx1/2 and i2 = ±Nx2/2
obtained in the IFFT1 and FFT2 algorithms are not well-defined since they correspond
exactly to the Nyqvist frequency, and in our numerical experiments they have given rise to
numerical instabilities. Therefore these components are set to zero in the approximations
of x1 and x2 derivatives in Eq. (58); the algorithms are described below.

The approximations of the x1 and x2 derivatives are obtained as

∂�

∂x1
≈ IFFT1

[
ikx1 FFT1(�)

]
(76)

and

∂�

∂x2
≈ IFFT2

[
ikx2 FFT1(�)

]
, (77)

respectively, where the components of the wavenumbers are (kx1 )i1 = 2�i1/L1 with i1 =
−(Nx1/2 − 1), . . . , (Nx1/2) and (kx2 )i2 = 2�i2/L2 with i2 = −(Nx2/2 − 1), . . . , (Nx2/2),
respectively.

The two components of the electric field E1 and E2 are integrated numerically from
Eqs. (23) and (24) with the approximations (76) and (77) as

E1 ≈ IFFT2IFFT1

{[ −ikx1

k2
x1

+ k2
x2

]
FFT2FFT1

[
1 − (2�)2 f̂ k

i1,i2,0,0

]}
(78)

and

E2 ≈ IFFT2IFFT1

{[ −ikx2

k2
x1

+ k2
x2

]
FFT2FFT1

[
1 − (2�)2 f̂ k

i1,i2,0,0

]}
, (79)

respectively; i.e., the expression [1 − (2�)2 f̂ k
i1,i2,0,0] is Fourier transformed in the x1 and x2

direction, then multiplied with the appropriate factors, and then inverse Fourier transformed
to obtain E1 and E2. The components corresponding to kx1 = kx2 = 0 are set to zero.

Similarly, the expressions for the integrated magnetic field used in Eqs. (58)–(60) are
approximated, up to “constants” of integration which will have no effect on the numerical
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results, by

∫ x1

0
(B − B01) dx1 ≈ IFFT1

1

ikx1

FFT1(B − B01) (80)

and ∫ x2

0
(B − B02) dx2 ≈ IFFT2

1

ikx2

FFT2(B − B02), (81)

where the components corresponding to kx1 = 0 [in Eq. (80)] and kx2 = 0 [in Eq. (81)] are
set to zero.

The numerical approximation of the x1 and �1 derivatives in Eq. (58) are performed as

∂

∂�1

(
−i�2 B01 + ∂

∂x1

)
G1 ≈ IFFT1

{
D�1

[
i
(
kx1 − �2 B01

)
FFT1G1

]}
, (82)

where D�1 is a difference approximation of the �1 derivative. The form of the approximation
(82) makes it possible to separate between incoming and outgoing waves at the boundary
and to use numerically stable approximations of the �1 derivative for the two cases: The
factor (kx1 − �2 B01) appearing in Eq. (82) is the same factor as in boundary condition (63);
thus (kx1 − �2 B01) ≥ 0 describes outflow and (kx1 − �2 B01) < 0 describes inflow at the
boundary at �1 = �1,max.

For negative �1, function values are not represented on the numerical grid; even so, the
boundary at �1 = 0 is a symmetry boundary which can be “removed” by employing a
symmetry relation similar to (29). In order to calculate the difference approximation D�1 of
the �1 derivative used in Eq. (82), the symmetry is used to temporarily represent function
values for negative �1, so that the boundary at �1 = 0 is removed, as follows.

Before performing the �1 differentiation, the function values are temporarily moved, by
symmetry, from the part of the domain with positive �1 and negative �2 to the part of the
domain with negative �1 and positive �2, so that the �1 domain goes from �1 = −�1,max to
�1 = �1,max and the �2 domain goes from �2 = 0 to �2 = �2. max. Thereafter the numerical
�1 differentiation is performed with appropriate boundary conditions, and finally the result
is redistributed to the original domain with only nonnegative �1.

In detail, these steps are performed as follows. The grid function to be differentiated
numerically in Eq. (82) is

[
i
(
kx1 − �2 B01

)
FFT1G1

] ≡ g̃i1,i2, j1, j2 , (83)

where i1 = −(Nx1/2 − 1), . . . , Nx1/2 now represents Fourier components (kx1 )i1 = i12�/

L1 of g̃ since the Fourier transform FFT1 has been applied in the x1 direction. Because of
the Fourier transforms in x1, v1, and v2 space (yielding kx1 , �1, and �2, respectively), the
grid function g̃ obeys the symmetry property, similar to Eq. (29),

g̃i1,i2,− j1, j2 = g̃∗
−i1,i2, j1,− j2 . (84)

That is, in order to obtain the components of g̃ for negative j1 (representing negative �1),
which are not represented on the numerical grid, the complex conjugates (superscript ∗) of
these components are found on the numerical grid by the symmetry relation at the location
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where i1, j1, and j2 has opposite signs; therefore, in order to perform the �1 derivative
numerically, the components of g̃ are ordered in vectors as

gi1,i2, j2 =




g−N�1

g−N�1 +1
...

g−1

g0

g1
...

gN�1




i1,i2, j2

←




g̃∗
−i1,i2,N�1,− j2

g̃∗
−i1,i2,N�1 −1,− j2

...
g̃∗

−i1,i2,1,− j2

g̃i1,i2,0, j2

g̃i1,i2,1, j2
...

g̃i1,i2,N�1 , j2




(85)

for each j2 = 0, 1, . . . , N�2 , i1 = −(Nx1/2 − 1), . . . , Nx1/2, and i2 = 0, 1, . . . , Nx2 − 1,
respectively.

The �1 derivative g′ = ∂g
∂�1

≈ D�1 gi1,i2, j2 is calculated using the standard fourth-order
Padé scheme [10, 13]. For the inner points, the implicit approximation

g′
j1−1 + 4g′

j1 + g′
j1+1 = 3

��1

(
g j1+1 − g j1−1

)
, (86)

where j1 = −N�1 + 1, . . . ,−1, 0, 1, . . . , N�1 − 1 is used.
The boundary at �1 = �1,max is an outflow boundary for kx1 ≥ �2 B01 [cf. Eq. (63)], where

kx1 = 2�i1/L1, i.e., for i1 ≥ L1�2, j2 B01/2�. At the outflow boundary a one-sided approx-
imation,

g′
N�1

+ 2g′
N�1 −1 = − 1

2��1

(−5gN�1
+ 4gN�1 −1 + gN�1 −2

)
, (87)

is used, which gives a truncation error of order ��3
1 at the boundary. For kx1<�2 B01, the

boundary at �1 = �1,max is an inflow boundary, at which a straight extrapolation,

g′
N�1

= g′
N�1 −1, (88)

is used, which gives a truncation error of order ��2
1 at the boundary.

Correspondingly, the schemes at �1 = −�1,max become

g′
−N�1

+ 2g′
−N�1 +1 = 1

2��1

(−5g−N�1 + 4g−N�1+1 + g−N�1+2
)

(89)

and

g′
−N�1

= g′
−N�1+1 (90)

for the outflow (where kx1 ≤ �2 B01) and inflow (where kx1 > �2 B01) boundaries, respectively
[cf. Eq. (66)].

The reason for using different approximations at the inflow and outflow boundaries is
that the third-order approximation of the �1 derivative used for the outflow of waves is
not completely stable for the inflow of waves; a numerical test has shown that there are
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some slowly growing modes which eventually destroy the numerical solution. This problem
could be seen in some numerical solutions of the simple two-dimensional problem (48),
with kx1 = kx2 = 0, with random numbers as the initial condition.

The second-order approximations (88) and (90), giving a formal overall accuracy of
at most three, can be justified as follows: This boundary condition only affects waves
which reach the boundary, and which then turn back into the domain again. Parts of these
waves are lost through the outflow boundary. The loss of information through the outflow
boundary is of zeroth order, i.e., it is independent of ��1 and ��2, while the local truncation
error for the inflow boundary is of second order in ��1 and ��2. This means that even
if the inflow boundary is resolved with higher accuracy, the gain in numerical accuracy
does not contribute much to solving the physical problem more accurately, because of
the information lost through the outflow boundary. If these waves are important for the
physical problem, then the boundary must instead be moved further away from the origin.
The only important property of the inflow boundary is to be robust, not creating waves and
noise.

Equations (86)–(90) form a tridiagonal equation system for each component i1, i2, j2 in
Eq. (85), with each system having 2N�1 + 1 complex-valued unknowns. When the solution
vector g′ has been calculated, the numerical differentiation of g̃ is obtained as




g̃′
−i1,i2,N�1 ,− j2

g̃′
−i1,i2,N�1 −1,− j2

...
g̃′

−i1,i2,1,− j2

g̃′
i1,i2,0, j2

g̃′
i1,i2,1, j2

...
g̃′

i1,i2,N�1 , j2




←




−(g′)∗−N�1

−(g′)∗−N�1 +1
...

−(g′)∗−1

g′
0

g′
1
...

g′
N�1




i1,i2, j2

; (91)

i.e., it is used that for the �1 derivative of g̃, the real part is an odd function with respect to
(i1, j1, j2), and the imaginary part is an even function with respect to the same vector [see
a similar discussion after Eq. (29)]. Finally, the numerical inverse Fourier transform in x1

space yields the approximation (82).
The boundary operator in Eq. (63) is calculated by using the approximation (80) for the

numerical integration of (B − B01), and by using the approximation FFT1 and IFFT1 for
F1 and F−1

1 , respectively.
The algorithm above for calculating the x1 and �1 derivatives will, with small modifi-

cations, hold also for the differentiation in x2 and �2 space. A difference is that function
values are already represented on the numerical grid for negative �2, and it is therefore not
necessary to artificially extend function values to negative �2 by symmetry by ordering of
vectors similar to that in Eqs. (85), (91) Making approximations similar to Eq. (82) (but in
x2 and�2 space instead of x1 and�1 space), the�2 differentiation can therefore be performed
directly on the function [

i
(
kx2 + �1 B02

)
FFT2G2

] ≡ g̃i1,i2, j1, j2 , (92)

with j1 = 0, 1, . . . , N�1 , j2 = −N�2 , 1, . . . , N�2 , i1 = 0, . . . , Nx1 , and i2 = −(Nx2/2 − 1),
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1, . . . , Nx2 − 1, and taking into account the boundary conditions (64) and (65). We omit
the detailed discussion about the x2 and �2 differentiations here.

In order to reduce aliasing effects in the x1 and x2 directions for nonlinear problems, a
sixth-order dissipative term,

	�x4
1

(
∂6 f̂

∂x6
1

+ ∂6 f̂

∂x6
2

)
, (93)

is added to the right-hand side of Eq. (58), where the constant 	 is set to some small positive
number. The derivatives are approximated by centred second-order approximations.

3.3. Stability Constraints on the Time Step

When solving a dependent linear system of differential equations in time, an explicit
time-stepping scheme has a Courant condition [20]

�t <



�max
, (94)

which must be fulfilled for stability. The constant 
 depends on the scheme and �max is
typically the maximum modulus of the eigenvalues of the semidisecretised system. For the
system studied in the present article, the eigenvalues are close to imaginary. The stability
region for the Runge–Kutta scheme along the imaginary axis goes from −i

√
8 to i

√
8,

which gives


 =
√

8. (95)

In the equation to be solved,

∂ f̂

∂t
− i

∂2 f̂

∂x1∂�1
− i

∂2 f̂

∂x2∂�2
+ i(E1�1 + E2�2) f̂ + B�1

∂ f̂

∂�2
− B�2

∂ f̂

∂�1
= 0, (96)

the coefficients (E1�1 + E2�2), B�1, and B�2 depend on all the variables (x1, x2 , �1, �2, t),
which complicates an exact stability analysis. The analysis can be simplified considerably
by replacing the coefficients with their maximum absolute values at each time, and by
assuming the time dependence to be weak for the resulting coefficients. By this procedure,
Eq. (96) is changed into

∂ f̂

∂t
− i

∂2 f̂

∂x1∂�1
− i

∂2 f̂

∂x2∂�2
+ i(E1,max�1,max + E2,max�2,max) f̂

+ Bmax�1,max
∂ f̂

∂�2
− Bmax�2,max

∂ f̂

∂�1
= 0, (97)

where E1,max(t), E2,max(t), and Bmax(t) are the maximum absolute values (max norm) of
E1, E2, and B at each time. By neglecting the time dependence of these absolute values, a
von Neumann stability analysis can be carried through. The resulting maximum eigenvalue
is

�max = Kx1 K�1 + Kx2 K�2 + E1,max�1,max + E2,max�2,max

+ Bmax�1,max K�2 + Bmax�2,max K�1 , (98)
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where Kx1 , Kx2 , K�1 , and K�2 are the maximum values of the approximations of wavenum-
bers produced by the numerical approximations of the x1, x2, �1, and �2 derivatives, respec-
tively, given by

Kx1 = �

�x1
, Kx2 = �

�x2
, K�1 =

√
3

��1
, K�2 =

√
3

��2
, (99)

where Kx1 and Kx2 are produced by the pseudospectral method and K�1 and K�2 are produced
by the Padé scheme. The resulting maximum eigenvalue is

�max = �

�x1

√
3

��1
+ �

�x2

√
3

��2
+ E1,max�1,max + E2,max�2,max

+ Bmax�1,max

√
3

��2
+ Bmax�2,max

√
3

��1
. (100)

Introducing a generalised CFL number [20], condition (94) can be expressed as

�t = CFL



�max
, (101)

where the positive CFL number obeys the condition

CFL < 1 (102)

for stability. For the numerical experiments in the present article, the CFL number CFL =
0.9 has been used. As �max varies with time, the time step �t is adapted to maintain numerical
stability.

The artificial boundaries at �1 = �1,max and at �2 = ±�2,max has not been included in
the present analysis. For these boundaries, we rely on the analysis of model problems
performed by Lele [13] and by Gustafsson and Olsson [10] for the outflow boundaries, and
on long-time numerical experiments (see Section 4).

3.4. The Choice of Domain and Grid Sizes

The present section briefly discusses the choices of the numerical domain and grid
sizes to be made in � space. We restrict the discussion to one dimension, �1 = �,
only.

Consider the following two problems when representing a function f (v) on an equidistant
grid.

1. The function is defined for all velocities, but numerically one has to truncate the
solution domain at some high velocity vmax, where the function values have become small
enough.

2. The function may contain fine structures in the v direction, and one has to use a fine
enough grid to represent these fine structures.

These two problems have their duals in the inverse Fourier transformed variables; a function
which is less localised around v = 0 leads to a more oscillatory function in the � space, and
a more oscillatory function in v space leads to a less localised function in � space. To be
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precise, the two problems are converted to the following:

1. Assuming that the maximum velocity for particles is v = vmax, then after Fourier
transforming the function f (v), the quantity k�,max = vmax will be the maximum
“wavenumber” in � direction, and the minimum “wavelength” will then be ��,min =
2�/k�,max = 2�/vmax. According to the Nyqvist sampling theorem one needs at least two
grid points per wavelength to represent the solution, so the condition on the grid size be-
comes �� < ��,min/2 = �/vmax.

2. Assuming that the shortest “wavelength” to be resolved in the v direction is �v,min, the
highest wavenumber in the v direction becomes kv,max = 2�/�v,min. After Fourier trans-
formation, this gives a condition on the domain size in the � direction as �max ≥ kv,max =
2�/�v,min.

Thus, the value of the grid size �� must be smaller than �/vmax and the size of the domain
must be larger than −2�/�v,min ≤ � ≤ 2�/�v,min in order to represent the solution on the
grid.

In most real problems, however, the exact values of the largest particle velocities vmax and
the necessary resolution �v,min are not known beforehand, and it is necessary to oversam-
ple the problem in order to achieve numerical accuracy; the discretisation and numerical
approximation of the � derivative lead to a periodicity v space, where the effective particle
velocities follow from the dispersive properties of the numerical differentiation in � space.
If the grid in � space is too coarse, particles with high positive or negative velocities will
have effective velocities deviating significantly from the real velocity: For example, assum-
ing a cold particle stream at velocity v0 with the distribution function f (v) = 	(v − v0),
where 	 is the Dirac delta measure, yields in the Fourier transformed space the function
f̂ (�) = exp(i�v0). Differentiating this function exactly with respect to � yields the velocity
v0 as a factor in front of f̂ , but using the numerical Padé approximation [cf. Eq. (86)] to
calculate the derivative yields the effective velocity

veff = v0
3

v0��

sin(v0��)

[2 + cos(v0��)]
, (103)

which approaches v0 as �� → 0. It is apparent that the deviation of the effective velocity
veff from real velocity v0 may be significant if the �� chosen is too large.

Therefore, the inequality �� < �/vmax should be fulfilled with a sufficiently large margin
for correctly representing particle velocities. The inequality�max ≥ 2�/�v,min chosen should
be sufficiently large to resolve the desired filamentation in velocity space.

The number of grid points needed to represent the function f (x,�, t) on the interval
0 ≤� ≤�max [for negative �, the symmetry relation (29) is used] is

N� = �max

��
> 2

vmax

�v,min
. (104)

For the original function f (v), one would have to represent the function on the domain
−vmax ≤ v ≤ vmax, with the grid size �v < �v,min/2 according to the sampling theorem.
This gives the number of grid points in the v direction as

Nv = 2vmax

�v
> 4

vmax

�v,min
. (105)
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Thus one needs twice as many grid points to represent the original function f (v) on a grid,
compared to representing the Fourier transformed function f̂ (�) on a grid. However, the
function f̂ (�) is complex valued so the amount of data needed is the same for f̂ (�) as for
f̂ (v).

4. NUMERICAL RESULTS

4.1. Stability Tests

In order to assess the stability of the numerical scheme, numerical tests were carried out
with random numbers as initial conditions, and the relative change of the energy norm of
the solution was calculated as a function of time.

The simulation domain was chosen to be 0 ≤ x1 ≤ 4�, 0 ≤ x2 ≤ 4�, 0 ≤�1 ≤ 10, and
−10 ≤�2 ≤ 10 with the corresponding number of intervals Nx1 = Nx2 = 10, N�1 = 40, and
2N�2 = 80. The initial condition on the complex function values was random numbers, cho-
sen uniformly in the interval between −0.5 and +0.5 × 10−5. The number of time steps
were chosen to be Nt = 100 000, with the time step �t chosen adaptively according to
Section 3.3 with CFL = 0.9. No numerical dissipation was used.

Two simulations were carried out: In the first run, the magnetic field was chosen to be
constant, B = 1/

√
10 (see curve a in Fig. 1), and in the second run, the magnetic field was

chosen to be x1 and x2 dependent, B = sin[0.5(x1 + x2)]/
√

10 (see curve b in Fig. 1). These
two simulations are motivated by the fact that the boundary conditions at �1 =�1,max and
�2 =�2,max are dependent on B [see Eqs. (63)–(65)]. All quantities has been written out in
dimensional units in Fig. 1.

The relative norms of the solution decreased from unity to close to zero; thus no instabil-
ities could be seen in the two simulations. The large number of time steps ensured that any
growing modes should be visible in the simulations; that was not the case and we therefore
conclude that the scheme is robust and damps out noise over long time intervals.

FIG. 1. Two long-term stability tests with random numbers as initial conditions. The curves show the relative
change of the energy norm as a function of time: (a) constant magnetic field; (b) x-dependent magnetic field. Both
curves have the value unity at time zero.
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4.2. The Conservation of Particles

It is easy to show that the numerical scheme conserves the total number of particles (35)
exactly, approximated by the formula

N = (2�)2

Nx1 −1∑
i1=0

Nx2 −1∑
i2=0

f̂ i1,i2,0,0�x . (106)

The sum only picks up the zeroth Fourier component of f̂ i1,i2,0.0, corresponding to kx1 =
kx2 = 0, and that component is left unchanged since the terms, containing the x1 and x2

derivatives in Eq. (58) with the approximations (76) and (77), vanish. Along the boundary
�1 =�2 = 0 the rest of the terms, which are multiplied with �1 or �2, also vanish. This
result has been verified in all numerical experiments presented in this article, where the
number of particles has been conserved by the numerical scheme up to the precision of the
computer.

4.3. Upper Hybrid Waves and Electron Bernstein Waves

In order to verify that the numerical scheme reproduces waves with correct dispersive
properties, a numerical test which simulates electrostatic upper hybrid waves and electron
Bernstein waves was carried out.

The spatial dependence of the distribution function was here restricted to one dimension,
x1, while the function was assumed to be uniform in the x2 dimension. The simulation
domain was chosen to be 0 ≤ x1 ≤ 40�, 0 ≤�1 ≤ 10, and 0 ≤�2 ≤ 10 with the corresponding
number of intervals Nx1 = 120, N�1 = 40, and 2N�2 = 80. The initial condition was chosen
to be a sum of electrostatic waves with all possible wavenumbers in the original (x, v, t)
variables chosen as

f (x1, x2, v1, v2, 0) =
[

1 + A
59∑

i1=1

i1 sin(0.05i1x1)

]
f0(v1, v2), (107)

f0(v1, v2) = 1

2�
exp

[
−1

2

(
v2

1 + v2
2

)]
, (108)

which gives the initial condition in the Fourier transformed variables used in the simulation
as

f̂ (x1, x2,�1,�2, 0) =
[

1 + A
59∑

i1=1

i1 sin(0.05i1x1)

]
f̂ 0(�1,�2), (109)

f̂ 0(�1,�2) = 1

(2�)2
exp

[
−1

2

(
�2

1 + �2
2

)]
, (110)

with the amplitude set to A = 0.0001; the small amplitude A was chosen so that the problem
would be close to linear. The magnetic field was kept constant in the simulation, B = 1/

√
10,

giving the ratio �2
p/�2

c = 10 between the plasma frequency �p and the electron gyro fre-
quency �c = eB/m, in dimensional units. The time step �t was chosen adaptively accord-
ing to Section 3.3 with CFL = 0.9, and the number of time steps was Nt = 23 500; the end
time was Tend = 921�−1

p . No numerical dissipation was used.
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FIG. 2. Power spectrum in (�, kx1) space for electrostatic upper hybrid waves and electron Bernstein waves.
The electric energy is concentrated at the dispersion curves for the linear eigenmodes.

In order to analyse the result, the electric field component E1 was Fourier transformed in
the x1 space and time (using a Hamming window). The resulting power spectrum is shown in
Fig. 2, in a logarithmic scale. All quantities are given in dimensional units. The wavenumber
kx1 has been multiplied by RL = vth/�c = √

kBT/m/�c, and the frequency � has been
divided by the electron gyro frequency �c = eB/m, in order to make the comparison with
theoretical results easier.

Linear eigenmodes of the system have been calculated theoretically by Crawford and
Tataronis [5], who made plots of the dispersion curves for a few values of the magnetic
field; one of the cases is �2

p/�2
c = 10, giving the same value for the magnetic field as in

the setup for the present simulation. The corresponding dispersion curves are also cited
in a book by Chen [2]. (There appears to be an error in the scaling in the diagram de-
picted in [2]: Chen uses the scaling rL = vth/�c of the wavenumbers (see Fig. 7-34 in
[2]) while Crawford and Tataronis use the corresponding scaling R = vth/

√
2�c (see Fig.

1 and Eq. (9) in [5]). Both authors use the definition vth = √
2kBT/m of the thermal

velocity.)
In the simulation, the electric energy was concentrated along the linear Bernstein eigen-

modes (see Fig. 2), in a very good agreement with the linear theory [2, 5]. Even though in
the simulation low values were chosen for the amplitude of the initial condition, a nonlinear
effect can be seen in the power spectrum: A second harmonic of the upper hybrid wave can
be seen slightly below �/�c = 7 for small values of kx1 , where the first harmonic of the
upper hybrid oscillation is slightly above �/�c = 3.

The damping of waves for kx2 RL > 5 is a numerical effect; if the boundaries
�1,max and �2,max are given larger values, then these waves become undamped, in
agreement with theory (see Section 3.4 for a discussion about the choice of domain
size).
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4.4. Landau Damping and Reduction of the Recurrence Phenomenon

In order to verify that waves are absorbed by the boundaries �1 =�1,max and �2 =�2,max,
and that thereby the recurrence phenomenon is reduced, numerical experiments with un-
magnetised plasma, B = 0, were carried out: The initial condition in the original variables
was chosen to be

f (x1, x2, v1, v2, 0) = [
1 + A cos

(
kx1 x1 + kx2 x2

)]
f0(v1, v2), (111)

f0(v1, v2) = 1

2�
exp

[
−1

2

(
v2

1 + v2
2

)]
, (112)

which gives the initial condition in the Fourier transformed variables used in the simulation
as

f̂ (x1, x2,�1,�2, 0) = [
1 + A cos

(
kx1 x1 + kx2 x2

)]
f̂ 0(�1,�2), (113)

f̂ 0(�1,�2) = 1

(2�)2
exp

[
−1

2

(
�2

1 + �2
2

)]
, (114)

with the amplitude set to A = 0.0002, making the waves close to linear. The wavenumbers
kx1 and kx2 were chosen so that k2 = k2

x1
+ k2

x2
= 0.52; this choice of k makes the electro-

static Langmuir waves strongly Landau damped. Using the algorithm in the WHAMP [19]
program for calculating the frequency according to the linear dispersion law, we obtained
numerical values on the real and imaginary parts of the frequency for the wavenumber
k = 0.5r−1

D as �Re = 1.4156�p and �1m = −0.15337�p, respectively.
The first numerical experiment was restricted to one spatial dimension, x1; the wavenum-

bers were chosen to be kx1 = 0.5 and kx2 = 0, and the domain in x1 was chosen large enough
to contain one wavelength, 0 < x1 < 4�, with the number of grid points Nx1 = 10. In the �1

and �2 space, the simulation domain was chosen to be 0 ≤�1 ≤ 20 and −20 ≤�2 ≤ 20, with
the number of grid points N�1 = 150 and 2N�2 = 300. The number of time steps taken were
2554 in the simulation, ending at time tend = 200.

The numerical results can be seen in Fig. 3 (top); the modulus of the x̂1 component of the
electric field has been plotted as a function of time. All quantities in the figure have been
written out in dimensional units. Curve a in Fig. 3 shows the electric field for the case where
all function values have been set to zero at the boundary �1 =�1,max, and Fig. 3, curve b,
shows the electric field for the case where the outflow boundary conditions (63)–(65) have
been used at �1 =�1,max and �2 = ±�2,max.

The second numerical experiment was performed with two spatial dimensions, with an
obliquely propagating wave; the wavenumbers were chosen to be kx1 = kx2 = 0.5/

√
2, and

the domain in x1 and x2 space was chosen to be large enough to contain one wavelength,
0 < x1 < 4

√
2� and 0 < x2 < 4

√
2�, with the number of grid points Nx1 = Nx2 = 10. In the

�1 and �2 space, the simulation domain was chosen to be 0 ≤�1 ≤ 20 and −20 ≤�2 ≤ 20,
with the number of grid points N�1 = 150 and 2N�2 = 300. The number of time steps taken
were 3610 in the simulation, ending at time tend = 200.

The numerical results for this experiment are shown in the bottom of Fig. 3; the modulus
of the x̂1 component of the electric field has been plotted as a function of time. Curve c in
Fig. 3 shows the electric field for the case where all function values have been set to zero at
the boundaries �1 =�1,max and �2 =�2,max, and Fig. 3, curve d, shows the electric field for
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FIG. 3. The modulus of the electric field as a function of time. (Curves a–d). The impact of the recurrence
phenomenon on the electric field.

the case where the outflow boundary conditions (63) and (64) have been used at �1 = �1,max

and �2 = ±�2,max.
As is clear from Fig. 3, the solutions are initially exponentially damped. By measuring

the slope of the curves and by measuring the time for a number of periods before the
recurrence phenomenon takes place, we found the damping to be �Im ≈ −0.153 and the
real frequency to be �Re ≈ −1.41 in both numerical experiments, in good agreement with
the result achieved by the WHAMP algorithms.

At about t = 50�−1
p (Fig. 3, top) and about t = 70�−1

p (Fig. 3, bottom), one can see the
recurrence phenomenon resulting in sudden artificial increases in the electric field. In the
top of Fig. 3, one can see that the recurrence phenomenon causes the electric field to rise to
about 1/10 of the initial amplitude (curve a) for the case where the �1 boundaries has been
set to zero, and to rise to less than 1/1000 of the initial amplitude (curve b) for the case with
the outflow condition at the �1 boundary. Correspondingly, in the bottom of Fig. 3, one can
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see that the recurrence phenomenon causes the electric field to rise to somewhat less than
1/100 of the initial amplitude (curve c) for the case where the �1 and �2 boundaries has
been set to zero, and to rise to less than 10−8 of the initial amplitude (curve d) for the case
with the outflow conditions at the �1 and �2 boundaries.

It is apparent from this numerical investigation that the outgoing wave boundary condi-
tions prevent, to a large extent, waves from returning back and ruining the calculations by
the recurrence phenomenon, while the simple Dirichlet-type boundary conditions lead to a
stronger recurrence phenomenon, which may destroy the numerical results. The method of
setting the boundary values to zero was advised for the Fourier–Fourier method [1], which
is a method similar to (but not identical to) the method described in the present article.

We found the numerical values of the frequency and Landau damping to be in good
agreement with linear theory for the unmagnetised case.

5. CONCLUSIONS

The boundary conditions for the two-dimensional Fourier transformed Vlasov–Poisson
system has been studied, and a well-posed outflow boundary condition in the Fourier trans-
formed velocity space has been derived.

The system has been solved numerically, using high-order numerical approximations. It
was shown numerically that the recurrence phenomenon was reduced, and that the numerical
scheme was stable. The simulations reproduced known theoretical physical results to a high
degree.

6. DISTRIBUTION OF THE COMPUTER CODE

The Fortran 90 code which has been used to produce the numerical results in the present
article can be found on the internet Web site http://www.physics.irfu.se/∼be.

APPENDIX: PROOF OF THE WELL-POSEDNESS OF THE PROBLEM

In the Appendix, a proof is given of the well-posedness of the Fourier transformed Vlasov
equation (58) [equivalent to Eq. (22)], restricted to a bounded domain and with the boundary
conditions given in Section 2.6.

We will use the short notation for the integral expressions,

∫ ∫
x

d2x ≡
∫ L1

x1=0

∫ L2

x2=0
dx2 dx1 and

∫ ∫
�

d2� ≡
∫ �1,max

�1=0

∫ �2,max

�2=−�2. max

d�2 d�1, (115)

when convenient in the proof.
The problem is well-posed if the squared energy norm of the solution

‖ f̂ ‖2 =
∫ ∫

x

∫ ∫
�

| f̂ |2 d2� d2x =
∫ ∫

x

∫ ∫
�

f̂ f̂ ∗ d2� d2x (116)

is bounded for all times [20]. (The superscript ∗ denotes complex conjugation.) In the
following, we prove that the squared norm (116) is nonincreasing with time. Taking the
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time derivative of the squared norm,

d‖ f̂ ‖2

dt
=

∫ ∫
x

∫ ∫
�

(
f̂ ∗ ∂ f̂

∂t
+ f̂

∂ f̂ ∗

∂t

)
d2� d2x, (117)

and then replacing the time derivatives with the help of Eq. (58) gives

d‖ f̂ ‖2

dt
=

∫ ∫
x

∫ ∫
�

(
f̂ ∗

{
i exp

[
i�2

∫ x1

0
(B − B01) dx1

]
∂

∂�1

(
−i�2 B01 + ∂

∂x1

)
G1

+ i exp

[
−i�1

∫ x2

0
(B − B02) dx2

]
∂

∂�2

(
i�1 B02 + ∂

∂x2

)
G2 + i(�1 E1 + �2 E2) f̂

}

+ f̂

{
−i exp

[
−i�2

∫ x1

0
(B − B01) dx1

]
∂

∂�1

(
i�2 B01 + ∂

∂x1

)
G∗

1

− i exp

[
i�1

∫ x2

0
(B − B02) dx2

]
∂

∂�2

(
−i�1 B02 + ∂

∂x2

)
G∗

2

− i(�1 E1 + �2 E2) f̂ ∗
})

d2� d2x, (118)

where all terms containing E1 and E2 cancel out. In terms of the functions G1 and G2,
introduced in Eqs. (59), (60), the above equation can be rewritten

d‖ f̂ ‖2

dt
=

∫ ∫
x

∫ ∫
�

[
iG∗

1
∂

∂�1

(
−i�2 B01 + ∂

∂x1

)
G1 + iG∗

2
∂

∂�2

(
i�1 B02 + ∂

∂x2

)
G2

− iG1
∂

∂�1

(
i�2 B01 + ∂

∂x1

)
G∗

1 − iG2
∂

∂�2

(
−i�1 B02 + ∂

∂x2

)
G∗

2

]
d2� d2x

=
∫ ∫

x

∫ ∫
�

[
i

∂

∂�1

(
G∗

1
∂G1

∂x1

)
− i

∂

∂x1

(
G1

∂G∗
1

∂�1

)
+ i

∂

∂�2

(
G∗

2
∂G2

∂x2

)

− i
∂

∂x2

(
G2

∂G∗
2

∂�2

)
+ �2 B01

∂

∂�1
(G1G∗

1) − �1 B02
∂

∂�2
(G2G∗

2)

]
d2� d2x, (119)

which can be integrated one step,

d‖ f̂ ‖2

dt
=

∫ ∫
x

∫ �2,max

�2=−�2,max

[
iG∗

1
∂G1

∂x1
+ �2 B01G∗

1G1

]�1,max

�1=0

d�2 d2x

+
∫ ∫

x

∫ �1,max

�1=0

[
iG∗

2
∂G2

∂x2
− �1 B02G∗

2G2

]�2,max

�2=−�2,max

d�1 d2x

+
∫ L2

x2=0

∫ ∫
�

[
−G1

∂G∗
1

∂�1

]L1

x1=0

d2� dx2 +
∫ L1

x1=0

∫ ∫
�

[
−G2

∂G∗
2

∂�2

]L2

x2=0

d2� dx1,

(120)

where the last two terms vanish due to periodic boundary conditions in the x1 and x2

directions, respectively.
The first integral in Eq. (120) vanishes at the limit �1 = 0, due to symmetry: The function

G1 obeys the same symmetry properties (29) as f̂ , which is easily seen from the definition
(59) of G1. Therefore the product G1G∗

1 is an even function with respect to �2 at �1 = 0,
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and the expression �2G1G∗
1 is an odd function with respect to �2. The integral of the second

term �2 B01G1G∗
1 over the even interval � = ±�2,max therefore vanishes. The first term in

the integral vanishes because of the symmetry (29) and the periodic boundary conditions
in the x1 direction, as is shown here:∫ ∫

x

∫ �2,max

�2=−�2,max

[
G∗

1
∂G1

∂x1

]
�1=0

d�2 d2x = −
∫ ∫

x

∫ −�2,max

�2=�2,max

[
G∗

1
∂G1

∂x1

]
�1=0

d�2 d2x

= [Change variable �2 to −�2]

= +
∫ ∫

x

∫ �2,max

�2=−�2,max

[
G∗

1(x1, x2, 0, −�2, t)
∂

∂x1
G1(x1, x2, 0, −�2, t)

]
d�2 d2x

= [Use the symmerty (29)]

=
∫ ∫

x

∫ �2,max

�2=−�2,max

[
G1(x1, x2, 0,�2, t)

∂

∂x1
G∗

1(x1, x2, 0,�2, t)

]
d�2 d2x

= [Integrate by parts in x1 direction]

=
∫ L2

x2=0

∫ �2,max

�2=−�2,max

[
(G1G∗

1)L1
x1=0 −

∫ L1

x1=0
G∗

1
∂G1

∂x1
dx1

]
�1=0

d�2 dx2

= −
∫ ∫

x

∫ �2,max

�2=−�2,max

[
G∗

1
∂G1

∂x1

]
�1=0

d�2 d2x . (121)

The same expression appears on the left-hand and right-hand sides with opposite signs; thus
the expression must be equal to zero.

What remains of Eq. (120) is now, after reordering of the terms,

d‖ f̂ ‖2

dt
=

∫ L2

x2=0

∫ �2,max

�2=−�2,max

i

[ ∫ L1

x1=0
G∗

1

(
∂

∂x1
− i�2 B01

)
G1dx1

]
�1=�1,max

d�2 dx2

+
∫ L1

x1=0

∫ �1,max

�1=0

{
i

[ ∫ L2

x2=0
G∗

2

(
∂

∂x2
+ i�1 B02

)
G2 dx2

]
�2=�2,max

− i

[ ∫ L2

x2=0
G∗

2

(
∂

∂x2
+ i�1 B02

)
G2 dx2

]
�2=−�2,max

}
d�2 dx2. (122)

By using the Parseval relation for the Fourier series pairs (42)–(47),

∫ L1

x1=0
G∗

1�1dx1 = L1

∞∑
i1=−∞

G̃∗
1,i1

�̃1,i1 = L1

∞∑
i1=−∞

(F1G1)∗i1
(F1�1)i1 (123)

and ∫ L2

x2=0
G∗

2�2 dx2 = L2

∞∑
i2=−∞

G̃∗
2,i2

�̃2,i2 = L2

∞∑
i2=−∞

(F2G2)∗i2
(F1�2)i2 , (124)

where in Eq. (122)

�1 =
(

∂

∂x1
− i�2 B01

)
G1 and �2 =

(
∂

∂x2
+ i�1 B02

)
G2, (125)
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we have

d‖ f̂ ‖2

dt
=

∫ L2

x2=0

∫ �2,max

�2=−�2,max

i

[
L1

∞∑
i1=−∞

(F1G1)∗i1

(
ikx1 − i�2 B01

)
(F1G1)i1

]
�1=�1,max

d�2 dx2

+
∫ L1

x1=0

∫ �1,max

�1=0

{
i

[
L2

∞∑
i2=−∞

(F2G2)∗i2

(
ikx2 + i�1 B02

)
(F2G2)i2

]
�2=�2,max

− i

[
L2

∞∑
i2=−∞

(F2G2)∗i2

(
ikx2 + i�1 B02

)
(F2G2)i2

]
�2=−�2,max

}
d�2 dx2. (126)

By applying the boundary conditions (63)–(65) we now have

d‖ f̂ ‖2

dt
=

∫ L2

x2=0

∫ �2,max

�2=−�2,max

[
L1

∞∑
i1=−∞

− (F1G1)∗i1

(
kx1 − �2 B01

)

× H
(
kx1 − �2 B01

)
(F1G1)i1

]
�1=�1,max

d�2 dx2

+
∫ L1

x1=0

∫ �1,max

�1=0

{[
L2

∞∑
i2=−∞

− (F2G2)∗i2

(
kx2 + �1 B02

)

× H
(
kx2 + �1 B02

)
(F2G2)i2

]
�2=�2,max

+
[

L2

∞∑
i2=−∞

(F2G2)∗i2

(
kx2 +�1 B02

)
H

(−kx2 −�1 B02
)
(F2G2)i2

]
�2=−�2,max

}
d�2 dx2,

(127)

where kx1 = 2�i1/L1 and kx2 = 2�i2/L2. The Heaviside function truncates the sums, and
we finally have

d‖ f̂ ‖2

dt
= 2�

∫ L2

x2=0

∫ �2,max

�2=−�2,max

[ ∑
i1≥L1�2 B01/2�

− (i1−L1�2 B01/2�)
∣∣(F1G1)i1

∣∣2

]
�1=�1,max

d�2 dx2

+ 2�

∫ L1

x1=0

∫ �1,max

�1=0

{[ ∑
i2≥−L2�1 B02/2�

− (i2 + �1 B02/2�)
∣∣(F2G2)i2

∣∣2

]
�2=�2,max

+
[ ∑

i2≤−L2�1 B02/2�

(i2 + L2�1 B02/2�)
∣∣(F2G2)i2

∣∣2

]
�2=−�2,max

}
d�2 dx2. (128)

Each term in the sums is nonpositive. Therefore the energy norm is nonincreasing with
time, and we conclude that the continuous problem with the given boundary conditions is
well-posed.
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